##########################################################################
Jika diketahui :
p
= 3
q
= 7
Penyelesaian :
n
= p.q
= 3 x 7
= 21
m
= (p-1) (q-1)
= (3 -1)(7 – 1)
= 12
e
* d mod 12 = 1 (Cari bilangan prima yang jika mod M hasilnya 1)
e
= 5
d
= 17
public
key = (e,n) = (5,21)
private
key = (d,n) = (17,21)
S
I S
J A R
83
73 83
74 65 82
##########################################################################
Proses
Enkripsi dan Deskripsi
S
= 83
Enkripsi
|
Deskripsi
|
C
= M ^ e mod n
|
M
= C ^ d mod n
|
8
^ 5 mod 21 = 8
|
8
^ 17 mod 21 = 8
|
3
^ 5 mod 21 = 12
|
12
^ 17 mod 21 = 3
|
I
= 73
Enkripsi
|
Deskripsi
|
C
= M ^ e mod n
|
M
= C ^ d mod n
|
7
^ 5 mod 21 = 7
|
7
^ 17 mod 21 = 7
|
3
^ 5 mod 21 = 12
|
12
^ 17 mod 21 = 3
|
S
= 83
Enkripsi
|
Deskripsi
|
C
= M ^ e mod n
|
M
= C ^ d mod n
|
8
^ 5 mod 21 = 8
|
8
^ 17 mod 21 = 8
|
3
^ 5 mod 21 = 12
|
12
^ 17 mod 21 = 3
|
J
= 74
Enkripsi
|
Deskripsi
|
C
= M ^ e mod n
|
M
= C ^ d mod n
|
7
^ 5 mod 21 = 7
|
7
^ 17 mod 21 = 7
|
4
^ 5 mod 21 = 16
|
16
^ 17 mod 21 = 4
|
A
= 64
Enkripsi
|
Deskripsi
|
C
= M ^ e mod n
|
M
= C ^ d mod n
|
6
^ 5 mod 21 = 6
|
6
^ 17 mod 21 = 6
|
4
^ 5 mod 21 = 16
|
16
^ 17 mod 21 = 4
|
R
= 82
Enkripsi
|
Deskripsi
|
C
= M ^ e mod n
|
M
= C ^ d mod n
|
8
^ 5 mod 21 = 8
|
8
^ 17 mod 21 = 8
|
2
^ 5 mod 21 = 11
|
11
^ 17 mod 21 = 2
|